
Free Questions for CKS by ebraindumps

Shared by Roberson on 22-07-2024

For More Free Questions and Preparation Resources

Check the Links on Last Page

Question 1
Question Type: MultipleChoice

Given an existing Pod named nginx-pod running in the namespace test-system, fetch the service-account-name used and put the

content in /candidate/KSC00124.txt

Create a new Role named dev-test-role in the namespace test-system, which can perform update operations, on resources of type

namespaces.

Create a new RoleBinding named dev-test-role-binding, which binds the newly created Role to the Pod's ServiceAccount (found in the

Nginx pod running in namespace test-system).

Options:
A- Explanation:

Answer:
A

Question 2
Question Type: MultipleChoice

Create a PSP that will only allow the persistentvolumeclaim as the volume type in the namespace restricted.

Create a new PodSecurityPolicy named prevent-volume-policy which prevents the pods which is having different volumes mount apart

from persistentvolumeclaim.

Create a new ServiceAccount named psp-sa in the namespace restricted.

Create a new ClusterRole named psp-role, which uses the newly created Pod Security Policy prevent-volume-policy

Create a new ClusterRoleBinding named psp-role-binding, which binds the created ClusterRole psp-role to the created SA psp-sa.

Hint:

Also, Check the Configuration is working or not by trying to Mount a Secret in the pod maifest, it should get failed.

POD Manifest:

apiVersion: v1

kind: Pod

metadata:

name:

spec:

containers:

- name:

image:

volumeMounts:

- name:

mountPath:

volumes:

- name:

secret:

secretName:

Options:
A- Explanation:

apiVersion: policy/v1beta1

kind: PodSecurityPolicy

metadata:

name: restricted

annotations:

seccomp.security.alpha.kubernetes.io/allowedProfileNames: 'docker/default,runtime/default'

apparmor.security.beta.kubernetes.io/allowedProfileNames: 'runtime/default'

seccomp.security.alpha.kubernetes.io/defaultProfileName: 'runtime/default'

apparmor.security.beta.kubernetes.io/defaultProfileName: 'runtime/default'

spec:

privileged: false

Required to prevent escalations to root.

allowPrivilegeEscalation: false

This is redundant with non-root + disallow privilege escalation,

but we can provide it for defense in depth.

requiredDropCapabilities:

- ALL

Allow core volume types.

volumes:

- 'configMap'

- 'emptyDir'

- 'projected'

- 'secret'

- 'downwardAPI'

Assume that persistentVolumes set up by the cluster admin are safe to use.

- 'persistentVolumeClaim'

hostNetwork: false

hostIPC: false

hostPID: false

runAsUser:

Require the container to run without root privileges.

rule: 'MustRunAsNonRoot'

seLinux:

This policy assumes the nodes are using AppArmor rather than SELinux.

rule: 'RunAsAny'

supplementalGroups:

rule: 'MustRunAs'

ranges:

Forbid adding the root group.

- min: 1

max: 65535

fsGroup:

rule: 'MustRunAs'

ranges:

Forbid adding the root group.

- min: 1

max: 65535

readOnlyRootFilesystem: false

Answer:
A

Question 3
Question Type: MultipleChoice

Fix all issues via configuration and restart the affected components to ensure the new setting takes effect.

Fix all of the following violations that were found against theAPI server:-

a. Ensure that the RotateKubeletServerCertificate argument is set to true.

b. Ensure that the admission control plugin PodSecurityPolicy is set.

c. Ensure that the --kubelet-certificate-authority argument is set as appropriate.

Fix all of the following violations that were found against theKubelet:-

a. Ensure the --anonymous-auth argument is set to false.

b. Ensure that the --authorization-mode argument is set to Webhook.

Fix all of the following violations that were found against theETCD:-

a. Ensure that the --auto-tls argument is not set to true

b. Ensure that the --peer-auto-tls argument is not set to true

Hint: Take the use of Tool Kube-Bench

Options:
A- Explanation:

Fix all of the following violations that were found against theAPI server:-

a. Ensure that the RotateKubeletServerCertificate argument is set to true.

apiVersion: v1

kind: Pod

metadata:

creationTimestamp: null

labels:

component: kubelet

tier: control-plane

name: kubelet

namespace: kube-system

spec:

containers:

- command:

- kube-controller-manager

+ - --feature-gates=RotateKubeletServerCertificate=true

image: gcr.io/google_containers/kubelet-amd64:v1.6.0

livenessProbe:

failureThreshold: 8

httpGet:

host: 127.0.0.1

path: /healthz

port: 6443

scheme: HTTPS

initialDelaySeconds: 15

timeoutSeconds: 15

name: kubelet

resources:

requests:

cpu: 250m

volumeMounts:

- mountPath: /etc/kubernetes/

name: k8s

readOnly: true

- mountPath: /etc/ssl/certs

name: certs

- mountPath: /etc/pki

name: pki

hostNetwork: true

volumes:

- hostPath:

path: /etc/kubernetes

name: k8s

- hostPath:

path: /etc/ssl/certs

name: certs

- hostPath:

path: /etc/pki

name: pki

b. Ensure that the admission control plugin PodSecurityPolicy is set.

audit: '/bin/ps -ef | grep $apiserverbin | grep -v grep'

tests:

test_items:

- flag: '--enable-admission-plugins'

compare:

op: has

value: 'PodSecurityPolicy'

set: true

remediation: |

Follow the documentation and create Pod Security Policy objects as per your environment.

Then, edit the API server pod specification file $apiserverconf

on the master node and set the --enable-admission-plugins parameter to a

value that includes PodSecurityPolicy :

--enable-admission-plugins=...,PodSecurityPolicy,...

Then restart the API Server.

scored: true

c. Ensure that the --kubelet-certificate-authority argument is set as appropriate.

audit: '/bin/ps -ef | grep $apiserverbin | grep -v grep'

tests:

test_items:

- flag: '--kubelet-certificate-authority'

set: true

remediation: |

Follow the Kubernetes documentation and setup the TLS connection between the

apiserver and kubelets. Then, edit the API server pod specification file

$apiserverconf on the master node and set the --kubelet-certificate-authority

parameter to the path to the cert file for the certificate authority.

--kubelet-certificate-authority=<ca-string>

scored: true

Fix all of the following violations that were found against theETCD:-

a. Ensure that the --auto-tls argument is not set to true

Edit the etcd pod specification file $etcdconf on the master

node and either remove the --auto-tls parameter or set it to false.

--auto-tls=false

b. Ensure that the --peer-auto-tls argument is not set to true

Edit the etcd pod specification file $etcdconf on the master

node and either remove the --peer-auto-tls parameter or set it to false.

--peer-auto-tls=false

Answer:
A

Question 4

Question Type: MultipleChoice

Create a User named john, create the CSR Request, fetch the certificate of the user after approving it.

Create a Role name john-role to list secrets, pods in namespace john

Finally, Create a RoleBinding named john-role-binding to attach the newly created role john-role to the user john in the namespace john.

To Verify:Use the kubectl auth CLI command to verify the permissions.

Options:
A- Explanation:

se kubectl to create a CSR and approve it.

Get the list of CSRs:

kubectl get csr

Approve the CSR:

kubectl certificate approve myuser

Get the certificate

Retrieve the certificate from the CSR:

kubectl get csr/myuser -o yaml

here are the role and role-binding to give john permission to create NEW_CRD resource:

kubectl apply -f roleBindingJohn.yaml --as=john

rolebinding.rbac.authorization.k8s.io/john_external-rosource-rb created

kind: RoleBinding

apiVersion: rbac.authorization.k8s.io/v1

metadata:

name: john_crd

namespace: development-john

subjects:

- kind: User

name: john

apiGroup: rbac.authorization.k8s.io

roleRef:

kind: ClusterRole

name: crd-creation

kind: ClusterRole

apiVersion: rbac.authorization.k8s.io/v1

metadata:

name: crd-creation

rules:

- apiGroups: ['kubernetes-client.io/v1']

resources: ['NEW_CRD']

verbs: ['create, list, get']

Answer:
A

Question 5

Question Type: MultipleChoice

Two tools are pre-installed on the cluster's worker node:

Using the tool of your choice (including any non pre-installed tool), analyze the container's behavior for at least 30 seconds, using filters

that detect newly spawning and executing processes.

Store an incident file at /opt/KSRS00101/alerts/details, containing the detected incidents, one per line, in the following format:

The following example shows a properly formatted incident file:

Options:
A- Explanation:

Answer:
A

Question 6
Question Type: MultipleChoice

use the Trivy to scan the following images,

1. amazonlinux:1

2. k8s.gcr.io/kube-controller-manager:v1.18.6

Look for images with HIGH or CRITICAL severity vulnerabilities and store the output of the same in /opt/trivy-vulnerable.txt

Options:
A- Send us your suggestion on it.

B- Send us your suggestion

Answer:
A

To Get Premium Files for CKS Visit
https://www.p2pexams.com/products/cks

For More Free Questions Visit
https://www.p2pexams.com/linux-foundation/pdf/cks

https://www.p2pexams.com/products/CKS
https://www.p2pexams.com/linux-foundation/pdf/cks

