

Free Questions for 8007 by certscare

Shared by Weber on 24-05-2024
For More Free Questions and Preparation Resources
Check the Links on Last Page

Question 1

Question Type: MultipleChoice

I have a portfolio of two stocks. The weights are 60% and 40% respectively, the volatilities are both 20%, while the correlation of returns is 50%. The volatility of my portfolio is

Options:

A-16\%
B- 17.4%
C- 20%
D- 24.4\%

Answer:
B

Question 2

Question Type: MultipleChoice

The correlation between two asset returns is 1 . What is the smallest eigenvalue of their correlation matrix?

Options:

A- 1
B- 0.5
C- 0
D- None of the above

Answer:

C

Question 3

Question Type: MultipleChoice

The correlation between two asset returns is 0.5 . What is the largest eigenvalue of their correlation matrix?

Options:
A- 0.5
B- 1
C- 1.5
D- None of the above

Answer:

C

Question 4

Question Type: MultipleChoice

Stress testing portfolios requires changing the asset volatilities and correlations to extreme values. Which of the following would lead to a non positive definite covariance matrix?

Options:
A- Changing the volatilities to be greater than 100\%

B- Changing all the correlations to be unity
C- Changing all the correlations to be zero
D- All of the above

Answer:

B

Question 5

Question Type: MultipleChoice

Which of the following statements is true for symmetric positive definite matrices?

Options:

A- Its eigenvalues are all positive
B - One of its eigenvalues equals 0
C- If a is its eigenvalue, then -a is also its eigenvalue
D- If a is its eigenvalue, then is also its eigenvalue

Question 6

Question Type: MultipleChoice

Two vectors are orthogonal when:

Options:

A- one is a scalar multiple of the other
B- their components are linearly dependent
C - their determinant is zero
D- their scalar product (sum product) is zero

Answer:

D

To Get Premium Files for 8007 Visit

https://www.p2pexams.com/products/8007

For More Free Questions Visit

https://www.p2pexams.com/prmia/pdf/8007

